An application of simulated annealing to optimal transcranial direct current stimulation of the human brain
نویسندگان
چکیده
Transcranial direct current stimulation (tDCS) is known as the most effective technique for stimulating deeper brain areas. The capability of tDCS, however, strongly depends on the number of electrodes, their positions, and the amount of injected currents. This paper intends to apply the simulated annealing algorithm for determining optimal stimulation parameters in a multiple electrode scheme. The objective of the presented approach is to maximize the current density delivered to the target area under safety constraints. In order for the skin under the electrodes to be protected against temperature rises that may be caused by the stimulation, current injections are capped by a set of safety constraints. In the studies, the propagation of current density throughout the head is estimated via a 3D finite element approach in the ANSYS software package. Finally, the proposed algorithm is applied to a standard spherical four-layer human head model. The simulation results justify the capability of the established model in providing near optimal stimulation parameters. Accordingly, the presented approach provides neurologists with an effective tool to optimally stimulate the brains of patients.
منابع مشابه
Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human
Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase or a decrease in the brain excitability. This modi.cation in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might also facilitate the treatments ...
متن کاملW6: Transcranial Direct Current Stimulation Workshop
It is an Intensive 1-day course for introducing utilizing transcranial direct current stimulation (tDCS) in an applied format. This technique is a noninvasive brain stimulation that uses direct electrical currents over the head to stimulate specific parts of the brain which modulates neuronal activity. It has strong potentiality in the field of medical and neuroscientific research. Anodal stimu...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملDoes the Longer Application of Anodal-Transcranial Direct Current Stimulation Increase Corticomotor Excitability Further? A Pilot Study
Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability. Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one se...
متن کاملThe effect of Transcranial Direct-Current Stimulation (TDCS) on neuropsychological indices associated with social skills in children with Autism
Autism Spectrum Disorders (ASDs) are developmental neurological disorders characterized by defects in social interactions, communication, and repetitive behaviors. The aim of this study was to investigate the effect of transcranial Direct-Current Stimulation (tDCS) on social skills and behavioral problems in children with Autism disorder. The aim of this study was to investigate the effect of d...
متن کامل